Abstract
Abstract Fluid loading within an intracranial aneurysm is difficult to measure but can be related to the shape of the flow passage. The outcome of excessive loading is a fatal hemorrhage, making it necessary for early diagnosis. However, arterial diseases are asymptomatic and clinical assessment is a challenge. A realistic approach to examining the severity of wall loading is from the morphology of the aneurysm itself. Accordingly, this study compares pulsatile flow (Reynolds number Re = 426, Womersley number Wo = 4.7) in three different intracranial aneurysm geometries. Specifically, the spatio-temporal movement of vortices is followed in high aspect ratio aneurysm models whose domes are inclined along with angles of 0, 45, and 90 deg relative to the plane of the parent artery. The study is based on finite volume simulation of unsteady three-dimensional flow while a limited set of particle image velocimetry experiments have been carried out. Within a pulsatile cycle, an increase in inclination (0–90 deg) is seen to shift the point of impingement from the distal end toward the aneurysmal apex. This change in flow pattern strengthens helicity, drifts vortex cores, enhances spatial displacement of the vortex, and generates skewed Dean's vortices on transverse planes. Patches of wall shear stress and wall pressure shift spatially from the distal end in models of low inclination (0–45 deg) and circumscribe the aneurysmal wall for an inclination angle of 90 deg. Accordingly, it is concluded that high angles of inclination increase rupture risks while lower inclinations are comparatively safe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.