Abstract

The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral transform method, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force-stress tensor, and couple-stress vector are obtained. The obtained solutions incorporate the characteristic material length scale, which is essential to understand the fluid behavior at microscales. If characteristic length of the couple-stress fluid is zero, the results to the classical fluid are recovered. The influence of the scale parameter on the fluid velocity, axial flow rate, force-stress tensor, and couple-stress vector is analyzed by numerical calculus and graphical illustrations. It is found that the small values of the scale parameter have a significant influence on the flow parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.