Abstract

The development of three-dimensional waves generated by a region of pressures moving uniformly and rectilinearly over the surface of a thin elastic isotropic plate covering an ideal fluid layer of finite depth is investigated. The pressures act starting at a certain instant. A qualitative similarity between the waves occurring and gravity-capillary waves is noted. The calculations are made for an ice cover. This model problem permits examining a number of properties of the oscillations of the ice cover occurring when hauling freight over ice roads, landing and takeoff of aircraft from ice fields, etc. [1]. The development of ship waves in a fluid of finite depth in the absence of a floating plate was investigated in [2, 3] and gravity-capillary waves were studied in [4–6]. Certain properties of steady three-dimensional waves occurring during movement of a load over the surface of a floating elastic plate were established in [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.