Abstract

We present an analytical description of the class of unsteady vortex surface waves generated by non-uniformly distributed, time-harmonic pressure. The fluid motion is described by an exact solution of the equations of hydrodynamics generalizing the Gerstner solution. The trajectories of the fluid particles are circumferences. The particles on a free surface rotate around circumferences of the same radii, with the centers of the circumferences lying on different horizons. A family of waves has been found in which a variable pressure acts on a limited section of the free surface. The law of external pressure distribution includes an arbitrary function. An example of the evolution of a non-uniform wave packet is considered. The wave and pressure profiles, as well as vorticity distribution are studied. It is shown that, in the case of a uniform traveling wave of external pressure, the Gerstner solution is valid but with a different form of the dispersion relation. A possibility of observing the studied waves in laboratory and in the real ocean is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call