Abstract

The generalized magnetohydrodynamics (MHD) free convection flow of a Casson fluid through a channel immersed in a porous media with mass and heat transfer is considered. With heat generation, the contribution of concentration gradient is taken into account for heat flux (Dufour effect), and chemical reaction of order first for species balance is also considered. Initially, governing equations of flow model are reduced to nondimensional equations and then solved analytically. The transformed solutions for concentration, temperature, and velocity are written in summation form to invert by Laplace transform easily. The closed form solution of field variables has been plotted graphically due to different parametric variations to analyze the behavior of concentration, temperature, and flow fields against the physical parameters. Furthermore, comparisons among fractionalized and ordinary concentration, temperature, and velocity fields are made to see the effect of parameter α. It is concluded that concentration, temperature, and velocity obtained with fractional derivative are smaller than that obtained by ordinary derivative. Therefore, fractional derivative is the best choice to obtain controlled concentration, temperature, and velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.