Abstract

Purpose The purpose of this paper is to present an analytical study for a problem of unsteady free convection boundary layer flow past a periodically accelerated vertical plate with Newtonian heating (NH). Design/methodology/approach The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expressions for skin friction, Nusselt number and Sherwood number are also derived and discussed numerically. Findings It is observed that velocity, concentration and skin friction decrease with the increasing values of Sc whereas temperature distribution decreases in the increase in Pr in the presence of NH. Research limitations/implications This study is limited to a Newtonian fluid. This can be extended for non-Newtonian fluids. Practical implications Heat and mass transfer frequently occurs in chemically processed industries, distribution of temperature and moisture over agricultural fields, dispersion of fog and environment pollution and polymer production. Social implications Free convection flow of coupled heat and mass transfer occurs due to the temperature and concentration differences in the fluid as a result of driving forces. For example, in atmospheric flows, thermal convection resulting from heating of the earth by sunlight is affected differences in water vapor concentration. Originality/value The authors have studied heat and mass transfer effects on unsteady free convection boundary layer flow past a periodically accelerated vertical surface with NH, where the heat transfer rate from the bounding surface with a finite heat capacity is proportional to the local surface temperature, and which is usually termed as conjugate convective flow. The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expression for skin friction also derived and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call