Abstract

Experiments were conducted on rectangular wings with an aspect ratio of two, at a chord Reynolds number Rec=46,000, in order to understand how membrane wings behave in a prescribed transient motion. As a reference, high-speed Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) measurements were performed on stationary membrane wings in the range 0°<α<25°. Four distinct incidence regions were identified based on the mode shape, frequency and amplitude of the surface vibrations. Flow-field measurements indicated that the different regions were caused by the interactions of the leading-edge separated shear layer with the membrane. Then the membrane wing was subjected to transient sinusoidal pitching manoeuvres at starting incidences in each of these regions. The membrane deformation characteristics were seen to vary considerably with starting angle; both in terms of time-averaged and instantaneous quantities. In some cases there was significant time-lag in the response of the membrane. The PIV flow field measurements for this case showed signs of hysteresis between the pitch-up and pitch-down parts of the wing motion, which was not the case for a rigid wing with identical planform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.