Abstract

The unsteady laminar incompressible boundary layer flow due to a two-dimensional slot jet on a flat plate at an angle of attack has been studied. The unsteadiness in the flow field is due to the free stream velocity distribution or wall temperature (concentration) which varies with time. The governing partial differential equations in primitive variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The effect of the variation of the free stream velocity distribution with time is found to be more pronounced on the skin friction than on the heat or mass transfer. The Prandtl number and the variation of the wall temperature with time strongly affect the heat transfer. Similarly, the Schmidt number and the variation of the concentration at the wall with time strongly affect the mass transfer. Beyond a certain critical value of the viscous dissipation parameter, the plate gets heated instead of being cooled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.