Abstract

Abstract Unsteady flow structure of the rotating instability (RI) in a 1.5-stage axial compressor is investigated through experimental and numerical analyses. In the tested compressor, the total pressure rise of the rotor stagnates at a certain flow coefficient before it increases again towards lower flow rate in a case involving a wide tip clearance. The RI appears beyond this stagnant point as the compressor is throttled. The RI indicates a gentle hump in the frequency spectra of wall pressure or the flow velocity near the tip in a range approximately 20 to 40% of the blade-passing frequency. As the flow rate decreases, the mode order of the RI increases, in contrast to more commonly reported tendency, while the propagation velocity remains constant. These features are well captured by DES of the half-annulus model. At its onset, RI is formed by the collision of the tip leakage vortex onto the pressure surface of the adjacent blade and subsequent vortex segmentation. This vortex structure spans two blade passages and propagates in the direction opposite to the rotor rotation. As the compressor is throttled, RI becomes more dominated by the circumferential propagation of vortex breakdown of tip leakage vortices, which occur simultaneously among neighboring passages with slight phase differences. The mechanism is discussed in relation to the temporal change in the blade tip loading. The frequency of vortex shedding increases with the reduction in flow rate and thus the increase in the number of RI disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.