Abstract

Flow in a typical centrifugal pump is known to be unsteady due to flow instabilities and mutual interactions between the rotating part and the stationary parts. Flow instabilities are mostly viscous phenomena such as boundary layer separation and vortex shedding that produces relatively low frequency and small amplitude pressure fluctuations. Mutual interaction between the impeller blades and the guide vane diffuser produces relatively high frequency and large amplitude pressure fluctuations. This phenomenon is more closely related to compressibility than viscosity. It is important because it may cause structural vibration and noise. In this paper, the steady and unsteady turbulent flow through the whole flow passage of an entire centrifugal pump, has been computed to predict the pressure fluctuation of flow in the pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.