Abstract

This paper focuses on the buoyancy-induced unsteady flow phenomenon inside high-pressure compressor disk cavities. In order to understand the flow structure in a realistic configuration, a 10-stage core compressor of the NASA/GE Energy Efficient Engine is adopted as a computational target. The numerical flow simulation is conducted on a full annulus model, where the temperature distribution on the wall is modeled based on the core test results. The time-averaged flow fields are obtained by detached eddy simulation (DES) and two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) simulation, and the difference is discussed in detail. The DES result showed large-scale, vortical structures with significant radial velocity fluctuations especially in the rear part of the compressor. These fluctuations create radial arm-like structure in the temperature distribution in the cavity, and greatly enhance the mixing between the bore coolant and hot air near the cavity wall. In addition, it is observed that the hot air discharged from the cavities creates a large cell at bore region, which extends across several rear stages. Although the present study successfully illustrates the entire structure of unsteady flow in heated compressor disk cavities including full stages, a more detailed validation will be needed to further confirm the applicability of DES for the targeted flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call