Abstract

AbstractThe unsteady flow separation of airfoil with a local flexible structure (LFS) is studied numerically in Lagrangian frames in detail, in order to investigate the nature of its high aerodynamic performance. For such aeroelastic system, the characteristic-based split (CBS) scheme combined with arbitrary Lagrangian-Eulerian (ALE) framework is developed firstly for the numerical analysis of unsteady flow, and Galerkin method is used to approach the flexible structure. The local flexible skin of airfoil, which can lead to self-induced oscillations, is considered as unsteady perturbation to the flow. Then, the ensuing high aerodynamic performances and complex unsteady flow separation at low Reynolds number are studied by Lagrangian coherent structures (LCSs). The results show that the LFS has a significant influence on the unsteady flow separation, which is the key point for the lift enhancement. Specifically, the oscillations of the LFS can induce the generations of moving separation and vortex, which can enhance the kinetic energy transport from main flow to the boundary layer. The results could give a deep understand of the dynamics in unsteady flow separation and flow control for the flow over airfoil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.