Abstract

This paper studies the effect of a magnetic field and temperature-dependent viscosity on the unsteady flow and heat transfer for a viscous laminar incompressible and electrically conducting fluid due to an impulsively started rotating infinite disc. The unsteady axisymmetric boundary layer equations are solved using three methods, namely, (i) perturbation solution for small time, (ii) asymptotic analysis for large time and (iii) finite difference method together with Keller box elimination technique for intermediate times. The solutions are obtained in terms of local radial skin friction, local tangential skin friction, and local rate of heat transfer at the surface of the disc, for different values of the pertinent parameters: the Prandtl number Pr, the viscosity variation parameter ε and magnetic field parameter m. The computed dimensionless velocity and temperature profiles for Pr=0.72 are shown graphically for different values of ε and m.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call