Abstract

ABSTRACTA numerical investigation of the flow and behaviour of properties of a water-based Al2O3-nanofluid inside a two-sided lid-driven inclined non-uniformly heated and concentrated porous cavity is made in this paper. The focus of the study is on determining how the buoyancy ratio and the inclination angles influence the unsteady double-diffusive natural convection in a cavity filled with a porous medium, and with non-uniform boundary conditions. We further consider different nanoparticle volume fractions of the nanofluid. It is assumed that the left and right vertical walls are insulated, while the bottom wall is heated and concentrated non-uniformly and the top wall maintained at a constant cold temperature. The top and bottom walls move from left to right and right to left with constant speed, respectively. The governing equations are solved numerically using a staggered grid finite-difference method for streamlines, isotherms, iso-concentrations, average Nusselt number and average Sherwood number for various values of nanoparticle volume fraction, inclination angle and buoyancy ratio. The change in the flow, temperature and concentration profile patterns with respect to time is depicted and described. The results are compared with previously published work and excellent agreement has been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.