Abstract

Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in porous volume formulated in dimensionless variables such as the temperature and vector potential functions within the Darcy–Boussinesq approach and the transient three-dimensional heat conduction equation based on the Fourier hypothesis for solid walls with corresponding initial and boundary conditions were solved using an iterative implicit finite-difference method. The main objective was to investigate the influence of the Rayleigh number 103 ≤ Ra ≤ 106, the Darcy number 10−5 ≤ Da ≤ 10−3, the thermal conductivity ratio 1 ≤ k1,2 ≤ 20, the solid wall thickness ratio 0.1 ≤ l/L ≤ 0.3, and the dimensionless time 0 ≤ τ ≤ 200 on the fluid flow and heat transfer. Comprehensive analysis of the effects of these key parameters on the average Nusselt number at the heat source surface was conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call