Abstract

Two-dimensional unsteady boundary layer equations of non-Newtonian fluids are treated. Flow of a thin fluid film of a power-law caused by stretching of surface is investigated by using a similarity transformation. By using this transformation, we reduce the unsteady boundary layer equations to a non-linear ordinary differential equation system. Numerical solutions of outcoming nonlinear differential equations are found by using a combination a Runge–Kutta algorithm and shooting technique. Boundary layer thickness is explored numerically for different values of power-law index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call