Abstract

The unsteady boundary layer flow of a micropolar fluid induced by a two-dimensional body, which is started impulsively from rest, is studied in this paper. The variation with time t of the external stream V(t) is assumed to be of the form V(t) 1 - exp(-atm), where a = 0 means a coefficient of acceleration and m is an arbitrary integral value. The problem is formulated for the flow at the rear stagnation point on an infinite plane wall. Numerical solutions of the unsteady boundary layer equations are obtained using an implicit finite-difference scheme known as the Keller's box method. Results are given for the velocity and microrotation profiles, as well as for the dimensionless time elapsed before the boundary layer begins to separate from the wall. It is found that the dimensionless time elapsed before separation takes place is lower for a micropolar fluid (K 0) than for a Newtonian fluid (K 0), where K denotes the micropolar or material parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.