Abstract
Flying animals possess highly complex physical characteristics and are capable of performing agile maneuvers using their wings. The flapping wings generate complex wake structures that influence the aerodynamic forces, which can be difficult to model. While it is possible to model these forces using fluidstructure interaction, it is very computationally expensive and difficult to formulate. In this paper, we follow a simpler approach by deriving the aerodynamic forces using a relatively small number of states and presenting them in a simple state-space form. The formulation utilizes Prandtl's lifting line theory and Wagner's function to determine the unsteady aerodynamic forces acting on the wing in a simulation, which then are compared to experimental data of the bat-inspired robot called the Aerobat. The simulated trailingedge vortex shedding can be evaluated from this model, which then can be analyzed for a wake-based gait design approach to improve the aerodynamic performance of the robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.