Abstract

AbstractThe problem of simulation models capable of predicting the aerodynamic instability of helicopter slung-load cargo containers and bluff bodies is addressed. Instability for these loads is known to depend on unsteady frequency-dependent aerodynamics, but simulation models that include the unsteady aerodynamics do not currently exist. This paper presents a method for generating such models using computational fluid dynamics (CFD) to generate forced-oscillation aerodynamic data and frequency domain system identification techniques to generate a frequency response from the CFD data and to identify a transfer function fit to the frequency response. The method is independent of the responsible flow phenomenon and is expected to apply to bluff-bodies generally. Preliminary results are presented for the case of the 6- by 6- by 8-ft CONEX (container express) cargo container. The present work is based on two-dimensional (2D) aerodynamic data for the CONEX side force and yaw moment generated by a forced oscillation in which frequency is varied smoothly over the range of interest. A first-order rational polynomial transfer function is found adequate to fit the aerodynamics, and this is shown to provide a good match with flight test data for the yawing motion of the CONEX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.