Abstract

ABSTRACT High-speed maglev trains are important future rail transportation systems that require high braking performance. One approach to braking in high-speed trains is using aerodynamic plate brakes, which offer improved braking performance at high speeds but can impact the train’s aerodynamic characteristics. In this study, dynamic grid technology was used to achieve plate motion, and unsteady Reynolds-averaged Navier-Stokes (URANS) equations and shear stress transfer (SST) k-ω turbulence model were adopted to simulate the unsteady aerodynamic behaviour of a 5-car maglev train running at 600 km/h. Two wind tunnel experiments validated the method, and grid independence analysis was also conducted. The unsteady aerodynamic performance and transient flow field around the train during plate braking in tailwind and headwind opening configurations were studied and analysed. As the plates opened, there was a rapid increase in both aerodynamic drag and lift, creating a pulse-like change. The tailwind opening configuration generated relatively large peak aerodynamic forces, whereas the peak forces decreased successively downstream along the train length. As the flow stabilized, periodic fluctuations in the aerodynamic forces of the plates occurred. The interference with the convective field and the impact on the aerodynamic force of the tail car were more significant for the tailwind opening configuration. In addition, the tailwind opening plate caused significant fluctuations in the aerodynamic force of the tail car, with similar effects observed in other cars. From an aerodynamic perspective, the headwind opening configuration yielded better results. These findings can guide the design and implementation of plate brakes for high-speed maglev trains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call