Abstract

In this study, in order to indicate the best airfoil profile for the different sections of a blade, five airfoils including S8xx, FFA, and AH series were studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. On the large scale profile, SST K-ω model with different wind speed at large-scale profile was applied to the simulation of horizontal axis wind turbines (HAWT). The aerodynamic simulation was accomplished using the computational fluid dynamic (CFD) method based on the finite volume method. The governing equations applied in this simulation are the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The aerodynamic coefficients of lift and drag were calculated at different angles of attack and different wind speeds. The results were validated by the Eppler code, Xfoil, and experimental data of the US National Renewable Energy Laboratory (NREL). The results showed that S818 profile is the best profile in terms of gaining the highest lift coefficient with the lowest angle of attack at the root of the blades. The results also indicated that the selected model can predict the exact geometry with a high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.