Abstract

In order to better understand the mechanisms that effect spray unsteadiness of effervescent atomizers and therefore to efficiently eliminate it, the two-phase flow pattern within the nozzle has been studied by pressure measurement and flow visualization. We found that the speed of sound in the two-phase flow can be predicted by the model suggested by Nguyen et al. (Int J Multiphase Flow 7:311–320, 1981) using an averaged void fraction value. Dominant peak frequencies of pressure fluctuations both inside and outside the mixing chamber become synchronized in the slug flow regime. We show that the slug passage frequency is linearly proportional to the speed of sound and almost equal to the fundamental frequency of the mixing chamber. At a constant liquid flow rate and as the gas flow rate is increased, pressure fluctuations reach a maximum value with the appearance of a synchronized peak frequency. The amplitude of pressure fluctuation is then insensitive to further increases in the gas flow rate. For a constant gas flow rate, the pressure fluctuation increases with the increment of the liquid flow rate, reaching the maximum value at the moment of transition from slug flow to the bubbly flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call