Abstract
Unstable particles are notorious in perturbative quantum field theory for producing singular propagators in scattering amplitudes that require regularization by the finite width. In this review I discuss the construction of an effective field theory for unstable particles, based on the hierarchy of scales between the mass, M, and the width, Γ, of the unstable particle that allows resonant processes to be systematically expanded in powers of the coupling α and Γ/M, thereby providing gauge-invariant approximations at every order. I illustrate the method with the next-to-leading order line-shape of a scalar resonance in an abelian gauge-Yukawa model, and results on NLO and dominant NNLO corrections to (resonant and non-resonant) pair production of W-bosons and top quarks.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.