Abstract

The present study reveals the fact that the relationship between the spring (April–May) North Atlantic Oscillation (NAO) and the following summer (June–September) tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) during the period of 1950–2018 was not stationary. It is shown that the relationship between the two has experienced a pronounced interdecadal shift, being weak and insignificant before yet strong and statistically significant after the early 1980s. Next we compare the spring NAO associated dynamic and thermodynamic conditions, sea surface temperature (SST) anomalies, and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018, so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection. During the latter epoch, when the spring NAO was positive, enhanced low-level vorticity, reduced vertical zonal wind shear, intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer, which is conducive to the genesis of WNP TCs. When the spring NAO is negative, the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP. The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation. During the period of 1996–2018, a remarkable eastward propagating wave-train occurred across the northern Eurasian continent, forced by the anomalous SST tri-pole in the North Atlantic. The East Asian jet flow became greatly intensified, and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation, corresponding to a positive spring NAO. During the former epoch, the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent, and the related atmospheric circulation anomalies were extremely weak, thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call