Abstract
A Morse code auto-recognition system is limited by stable typing speed and stable typing ratio from long to short intervals. For an unstable Morse code typing pattern, the auto-recognition algorithms in the literature are not good enough for applications. This paper adopted a neural network to recognize unstable Morse codes. From an experiment on a teenager with cerebral palsy, the neural network has an average recognition rate up to 93.2%. The recognition rate from an amputee aged 40, who used a prosthesis for typing, it is 97.2% on average. When we compare this to 99.2% for the recognition rate from a skilled expert, the result is quite promising. The neural network has successfully overcome the difficulty of analysing a severely unstable Morse code time series. Since the human typing speed is quite slow in comparison to signal processing by the computer, it also makes it possible to use a neural network for real-time signal recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.