Abstract

BackgroundIn man, many different events implying childhood separation from caregivers/unstable parental environment are associated with heightened risk for panic disorder in adulthood. Twin data show that the occurrence of such events in childhood contributes to explaining the covariation between separation anxiety disorder, panic, and the related psychobiological trait of CO2 hypersensitivity. We hypothesized that early interference with infant-mother interaction could moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment.MethodologyHaving spent the first 24 hours after birth with their biological mother, outbred NMRI mice were cross-fostered to adoptive mothers for the following 4 post-natal days. They were successively compared to normally-reared individuals for: number of ultrasonic vocalizations during isolation, respiratory physiology responses to normal air (20%O2), CO2-enriched air (6% CO2), hypoxic air (10%O2), and avoidance of CO2-enriched environments.ResultsCross-fostered pups showed significantly more ultrasonic vocalizations, more pronounced hyperventilatory responses (larger tidal volume and minute volume increments) to CO2-enriched air and heightened aversion towards CO2-enriched environments, than normally-reared individuals. Enhanced tidal volume increment response to 6%CO2 was present at 16–20, and 75–90 postnatal days, implying the trait's stability. Quantitative genetic analyses of unrelated individuals, sibs and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher (Bartlett χ = 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and 0.21 respectively. These results support a stress-diathesis model whereby the genetic influences underlying the response to 6%CO2 increase their contribution in the presence of an environmental adversity. Maternal grooming/licking behaviour, and corticosterone basal levels were similar among cross-fostered and normally-reared individuals.ConclusionsA mechanism of gene-by-environment interplay connects this form of early perturbation of infant-mother interaction, heightened CO2 sensitivity and anxiety. Some non-inferential physiological measurements can enhance animal models of human neurodevelopmental anxiety disorders.

Highlights

  • The term ‘separation anxiety’ applies comprehensively to multiple forms of distress reactions displayed by mammals during postnatal development in conjunction with events of separation from a caregiver [1]

  • Quantitative genetic analyses of unrelated individuals, sibs and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher (Bartlett x = 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and 0.21 respectively

  • These results support a stress-diathesis model whereby the genetic influences underlying the response to 6%CO2 increase their contribution in the presence of an environmental adversity

Read more

Summary

Introduction

The term ‘separation anxiety’ applies comprehensively to multiple forms of distress reactions displayed by mammals during postnatal development in conjunction with events of separation from a caregiver [1]. Specific responses to CO2-enriched air mixtures have been described in controlled studies of PD and SAD These responses consist of both stronger emotional reactions (e.g. panic anxiety), and altered respiratory parameters (i.e., wider tidal volume enhancements and fluctuations, and heightened minute ventilation) [4,5,6], compared to those seen in control subjects. Inasmuch as panic attacks occur in the absence of cues of external danger and are triggered by heightened CO2 concentrations, they are better seen as inner unconditioned false alarms of biological origin. According to this model, panic attacks derive from a deranged suffocation detector [4] via pathophysiological mechanisms that differ from those underlying general or anticipatory anxiety. We hypothesized that early interference with infant-mother interaction could moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call