Abstract

Early postnatal events exert powerful effects on development, inducing persistent functional alterations in different brain network, such as the catecholamine prefrontal-accumbal system, and increasing the risk of developing psychiatric disorders later in life. However, a vast body of literature shows that the interaction between genetic factors and early environmental conditions is crucial for expression of psychopathologies in adulthood. We evaluated the long-lasting effects of a repeated cross-fostering (RCF) procedure in 2 inbred strains of mice (C57BL/6J, DBA/2), known to show a different susceptibility to the development and expression of stress-induced psychopathologies. Coping behavior (forced swimming test) and preference for a natural reinforcing stimulus (saccharine preference test) were assessed in adult female mice of both genotypes. Moreover, c-Fos stress-induced activity was assessed in different brain regions involved in stress response. In addition, we evaluated the enduring effects of RCF on catecholamine prefrontal-accumbal response to acute stress (restraint) using, for the first time, a new "dual probes" in vivo microdialysis procedure in mouse. RCF experience affects behavioral and neurochemical responses to acute stress in adulthood in opposite direction in the 2 genotypes, leading DBA mice toward an "anhedonic-like" phenotype and C57 mice toward an increased sensitivity for a natural reinforcing stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.