Abstract

In this paper, we study two-phase multicomponent displacement of two immiscible fluids in both homogeneous and heterogeneous porous media. In many applications such as enhanced oil recovery, fluid mixing and spreading can be detrimental to the efficacy of the process. Here, we show that when an initially immobile phase is being displaced by a finite-size slug of solvents (surfactant and polymer), viscous fingering significantly enhances mixing and spreading of solvents. These effects are similar to those caused by medium heterogeneity and lead to poor displacement efficiency. We first quantify the displacement efficiency subject to different mobility ratios, Peclet numbers, and levels of medium heterogeneity. We observe a non-monotonic behavior in displacement efficiency as a function of mobility ratio, indicating that although stable frontal interface is desirable, miscible viscous fingering on the rear interface will eventually disintegrate the solvents slugs and reduce the displacement efficiency. Then, we show that miscible viscous fingering developing on the rear interface of the chemical slug could be greatly suppressed when viscosity contrast is gradually decreased using exponential or linear functions, leading to 10% increase in displacement efficiency while using the same amount of chemicals. To elucidate this low displacement efficiency, we study the evolution of mixing, spreading, and interfacial length and show that while higher viscosity ratios are quite effective in mobilizing the initially immobile phase in 1D displacements, they are in fact detrimental in 2D unstable displacements since they enhance mixing and spreading of solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.