Abstract

The feasibility of decoding lower limb kinematics in human treadmill walking from noninvasive electroencephalography (EEG) has been demonstrated with linear Wiener filter. However, nonlinear relationship between neural activities and limb movements may challenge the linear decoders in real-time brain computer interface (BCI) applications. In this study, we propose a nonlinear neural decoder using an Unscented Kalman Filter (UKF) to infer lower limb joint angles from noninvasive scalp EEG signals during human treadmill walking. Our results demonstrate that lower limb joint angles during treadmill walking can be decoded from the fluctuations in the amplitude of slow cortical potentials in the delta band (0.1-3Hz). Overall, the average decoding accuracy were 0.43 ± 0.18 for Pearson's r value and 1.82 ± 3.07 for signal to noise ratio (SNR), and robust to ocular, muscle, or movement artifacts. Moreover, the signal preprocessing scheme and the design of UKF allow the implementation of the proposed EEG-based BCI for real-time applications. This has implications for the development of closed-loop EEG-based BCI systems for gait rehabilitation after stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.