Abstract

Abstract A new reactive flame retardant (DTA), containing phosphaphenanthrene and triazine-trione groups was synthesized and applied to improve the flame retardancy of unsaturated polyester resin. The thermal stability, flame retardancy and combustion behaviors of UP/DTA thermosets were detected by thermogravimeric analysis (TG), limited oxygen index (LOI), vertical burning (UL94) test and cone calorimeter test. According to the research results, the addition of DTA contributed to improving the flame retardancy of UP. After adding 20 wt% DTA, the LOI of UP composite increased from 19.0% of the neat UP to 26.6%, and UL94 rating reached V-0. In addition, compared with pure UP, the peak heat release rate (pk-HRR), average heat release rate (av-HRR) and total heat release rate (THR) of UP/DTA-20 thermosetting material decreased by 44.0, 26.2 and 29.5%, respectively. In the gaseous phase, DTA decomposed to generate nitrogen-containing fragments with diluting effect and phosphorus-containing free radicals with quenching effect to inhibit the combustion. In the condensed phase, phosphaphenanthrene group of DTA decomposed to generate phosphorus-based compounds, which promoted the carbonization of the UP matrix and cooperated with triazine-trione group to increase the char yield. Therefore, DTA plays an important role in flame retardancy in the gas and condensed phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.