Abstract

We call a CNF formula {\em linear} if any two clauses have at most one variable in common. We show that there exist unsatisfiable linear $k$-CNF formulas with at most $4k^24^k$ clauses, and on the other hand, any linear $k$-CNF formula with at most $\frac{4^k}{8e^2k^2}$ clauses is satisfiable. The upper bound uses probabilistic means, and we have no explicit construction coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a more complex structure than general (non-linear) formulas: First, any treelike resolution refutation of any unsatisfiable linear $k$-CNF formula has size at least $2^{2^{\frac{k}{2}-1}}$. This implies that small unsatisfiable linear $k$-CNF formulas are hard instances for Davis-Putnam style splitting algorithms. Second, if we require that the formula $F$ have a {\em strict} resolution tree, i.e. every clause of $F$ is used only once in the resolution tree, then we need at least $a^{a^{\iddots^a}}$ clauses, where $a \approx 2$ and the height of this tower is roughly $k$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.