Abstract

AbstractWe examine an Unruh-DeWitt particle detector coupled to a scalar field in three-dimensional curved spacetime, within first-order perturbation theory. We first obtain a causal and manifestly regular expression for the instantaneous transition rate in an arbitrary Hadamard state. We then specialise to the Bañados-Teitelboim-Zanelli black hole and to a massless conformally coupled field in the Hartle-Hawking vacuum. A co-rotating detector responds thermally in the expected local Hawking temperature, while a freely-falling detector shows no evidence of thermality in regimes that we are able to probe, not even far from the horizon. The boundary condition at the asymptotically anti-de Sitter infinity has a significant effect on the transition rate.KeywordsBlack HoleUnruh-DeWitt DetectorInstantaneous Transition RateHartle-Hawking VacuumFreely-falling DetectorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.