Abstract

Motor and sensory recovery following critical size peripheral nerve defects is often incomplete. Although nerve grafting has been proposed as the gold standard, it is associated with several disadvantages. Here we report a novel approach to peripheral nerve repair using Human Unrestricted Somatic Stem Cells (USSC) delivered through an electrospun neural guidance conduit. Conduits were produced from PCL and gelatin blend. Several in vitro methods were utilized to investigate the conduit's physicochemical and biological characteristics. Nerve regeneration was studied across a 10-mm sciatic nerve gap in Wistar rats. For functional analysis, the conduits were seeded with 3 × 104 USSCs and implanted into a 10-mm sciatic nerve defect. After 14weeks, the results of functional recovery analysis and histopathological examinations showed that animals implanted with USSC containing conduits exhibited improved functional and histopathological recovery which was more close to the autograft group compared to other groups. Our results support the potential applicability of USSCs to treat peripheral nerve injury in the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call