Abstract

Unrenormalizable theories contain infinitely many free parameters. Considering these theories in terms of the Wilsonian renormalization group (RG), we suggest a method for removing this large ambiguity. Our basic assumption is the existence of a maximal ultraviolet cutoff in a cutoff theory, and we require that the theory be so fine tuned as to reach the maximal cutoff. The theory so obtained behaves as a local continuum theory to the shortest distance. In concrete examples of the scalar theory we find that at least in a certain approximation to the Wilsonian RG, this requirement enables us to make unique predictions in the infrared regime in terms of a finite number of independent parameters. Therefore, this method might provide a way for calculating quantum corrections in a low-energy effective theory of quantum gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.