Abstract

We investigate the capacity of tendons to bear substantial loads by exploiting their hierarchical structure and the viscous nature of their subunits. We model and analyze two successive tendon scales: the fibril and fiber subunits. We present a novel method for bridging intra-scale experimental observations by combining a homogenization analysis technique with a Bayesian inference method. This allows us to infer elastic and viscoelastic moduli at the embedded fibril scale that are mechanically compatible with the experimental data observed at the fiber scale. We identify the rather narrow range of moduli values at the fibrillar scale that can reproduce the mechanical behavior of the fiber, while we quantify the viscoelastic contribution of the embedding, non-collagenous matrix substance. The computed viscoelastic moduli suggest that a great part of the stress relaxation capacity of tendons needs to be attributed to the embedding matrix substance of its inner components, classifying it as a primal load relaxation constituent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.