Abstract

The simultaneous observations from a Doppler weather radar and an instrumented micrometeorological tower, offer an opportunity to dissect the effects of a gust front on the surface layer turbulence in a tropical convective boundary layer. We present a case study where a sudden drop in temperature was noted at heights within the surface layer during the passage of a gust front in the afternoon time. Consequently, this temperature drop created an interface which separated two different turbulent regimes. In one regime the turbulent temperature fluctuations were large and energetic, whereas in the other regime they were weak and quiescent. Given its uniqueness, we investigated the size distribution and aggregation properties of the turbulent structures related to these two regimes. We found that, the size distributions of the turbulent structures for both of these regimes displayed a clear power-law signature. Since power-laws are synonymous with scale-invariance, this indicated the passing of the gust front initiated a scale-free response which governed the turbulent characteristics of the temperature fluctuations. We propose a hypothesis to link such behaviour with the self organized criticality as observed in the complex systems. However, the temporal organization of the turbulent structures, as indicated by their clustering tendencies, differed between these two regimes. For the regime, corresponding to large temperature fluctuations, the turbulent structures were significantly clustered, whose clustering properties changed with height. Contrarily, for the other regime where the temperature fluctuations were weak, the turbulent structures remained less clustered with no discernible change being observed with height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call