Abstract

The RNA-dependent protein kinase (PKR), an eIF2α kinase plays an important role in anti-viral response, apoptosis and cell survival. It is also implicated to play a role in several cancers, metabolic and neurodegenerative disorders. A few ATP competitive inhibitors of the PKR have been reported in the literature with promising results in vitro and in vivo. The aim of this study was to unravel the structural interactions between these inhibitors and the PKR kinase domain using molecular simulations and docking. Our study reveals that the reported inhibitors bind in the adenine pocket and form hydrogen bonds with the hinge region and vdW interactions with non-polar residues in the binding site. The most potent inhibitor has several favorable interactions with the binding site and induces the P-loop to fold inward, creating a significant hydrophobic enclosure for itself. The computed binding free energies of these inhibitors are in accord with experimental data (IC50). Strategies to design potent and selective PKR inhibitors are discussed to overcome the reported promiscuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.