Abstract

AbstractThe quinoid‐donor‐acceptor (Q‐D‐A) strategy has recently emerged as a promising approach for constructing high mobility semiconducting polymers. In order to fully explore the potential of this strategy in improving the charge transport and elucidating the structure‐property‐performance relationships in Q‐D‐A polymers, a series of new polymers with different electron acceptor units and backbone coplanarity have been synthesized and characterized. All of the resulting Q‐D‐A polymers exhibit much more planar backbone conformations in comparison to their donor‐acceptor (D‐A) counterparts. Moreover, organic field‐effect transistors based on Q‐D‐A polymers exhibit excellent effective hole mobilities in a range of 0.44 to 3.35 cm2 V−1 s−1, most of which are orders of magnitude higher than those of their corresponding D‐A polymers. Notably, the hole mobility of 3.35 cm2 V−1 s−1 is among the highest for the quinoidal‐aromatic polymers characterized by conventional spin‐coating methods. Furthermore, the role of electron acceptors in Q‐D‐A polymers has been comprehensively investigated. Polymers with stronger acceptor units are more inclined to deliver edge‐on lamellas, high film crystallinity, small effective hole masses, and decent operational stability. The detailed structure‐property‐device performance relationship will pave the way toward high performance semiconducting polymers using the potent Q‐D‐A strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.