Abstract
Low-complexity regions are sub-sequences of biased composition in a protein sequence. The influence of these regions over protein evolution, specific functions and highly interactive capacities is well known. Although protein sequence entropy has been largely studied, its relationship with low-complexity regions and the subsequent effects on protein function remains unclear. In this work we propose a theoretical and empirical model integrating the sequence entropy with local complexity parameters. Our results indicate that the protein sequence entropy is related with the protein length, the entropies inside and outside the low-complexity regions as well as their number and average size. We found a small but significant increment in the sequence entropy of hubs proteins. In agreement with our theoretical model, this increment is highly dependent of the balance between the increment of protein length and average size of the low-complexity regions. Finally, our models and proteins analysis provide evidence supporting that modifications in the average size is more relevant in hubs proteins than changes in the number of low-complexity regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.