Abstract

InN quantum dots (QDs) are considered to be promising nanostructures for different device applications. For any hexagonal AB-stacking semiconductor system, polarity is an important feature which affects the electronic properties. Therefore, the determination of this characteristic on any wurtzite (semi)polar III-N compound or alloy is essential for defining its applicability. In this paper, the polarity of InN QDs grown on silicon by indium droplet epitaxy plus nitridation and annealing was determined by a modified approach combining exit wave reconstruction with negative-spherical-aberration high-resolution lattice imaging using TEM. Comparing the micrographs of two QDs from the same TEM specimen with the simulated images of InN slab structures generated under the same conditions as of the experiments, it was confirmed that the QDs of the present study are N polar. Given that the settlement of material's polarity has always been a tedious, indirect and controversial issue, the major value of our proposal is to provide a straightforward procedure to determine the polar direction from atomic-resolution focal series images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.