Abstract

Several studies have suggested the direct relationship between skin complications, air pollution, and UV irradiation. UVB radiations cause various skin complications such as skin aging, skin inflammation, and skin cancer. The current study is designed to develop an ultraviolet (UV) absorbing MAA-loaded topical gel and to evaluate its UVA and UVB screening potential. MAA was extracted from the Nostoc commune Vaucher ex Bornet et Flahault (N. commune) and characterized by HPLC-PDA (with a retention time 2.6 min), UV-Visible (absorption maximum 334 nm), and mass spectrometry (m/z 346.2) techniques. The methanolic (10%) solution of MAA (50-150 μl) was dissolved in propylene glycol and mixed with hydrated gel (1.5 % of carbopol 934) by using EDTA (0.3%). Eight (F1-F8) formulations were evaluated for their physico-chemical characters. F7 retained its physio-chemical characters for 90 days. Further selected formulation (F7) was evaluated for its gelling strength (GSg), gelling temperature (GT), melting temperature (MT), apparent viscosity (cp), molecular mass (MMS), pH, physical appearance, homogeneity, and spreading diameter (SD). The stability study of the fabricated gel formulation was done as per International Committee on Harmonization guidelines and sunscreen potential was determined by in vitro sunscreen UV method. Findings revealed that GSg (337 ± 1.7 g/cm2), GT (22.8 ± 0.2 °C), cp (71.1 ± 0.2), MMS (424.177 ± 0.7), pH (6.2 ± 0.04), and SD (56 ± 0.2). For in vitro sunscreen potential determination, different concentrations of F7 (50-150 μl) were prepared. Topical application of the F7 displayed UV-A/UV-B photoprotection with SPF 1.13 folds greater then marketed formulation (Lotus herbals UV screen gel). Based on these findings, it was concluded that methanolic extract derived from N. commune contains Porphyra-334 which can be potentially used as photo protective compound in several cosmetic preparations. Development of sunscreen gel from Nostoc commune The current investigation is designed to develop ultraviolet (UV) absorbing MAA (mycosporine amino acid)-loaded topical gel from Nostoc commune to evaluate its UVA and UVB screening potential. LCMS characterization of HPLC-PDA purified MAA from N. commune methanolic extract demonstrated a prominent ion peak of a protonated molecule ([M + H]+) at m/z 346.2 [M+H]+ value confirmed the presence of Porphyra-334. Porphyra-334 is a broad-spectrum sun-protective compound evidenced for its potential in blocking UVA and UVB (Bhatia et al. 2010). Prepared sunscreen formulations remain stable for prolonged period and provide broad-spectrum protection against harmful UV range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call