Abstract

For species that produce seeds with a water-impermeable coat, i.e. physical dormancy (PY), it has been widely recognized that (1) seeds shed at a permeable state cannot become impermeable after dispersal; and (2) dormancy-cycling, i.e. a permeable ↔ impermeable transition, does not occur. Given a tight relationship between moisture content and onset of seed-coat impermeability, seeds maturing at low relative humidity (RH) and occurring in a high-temperature environment are inferred to produce impermeable coats, and ex situ drying of permeable seeds can lead to the onset of impermeability. It is proposed here that permeable seeds dispersed at low RH and in high-temperature soils might become impermeable due to continuous drying. Similarly, seeds with shallow PY dormancy (with higher moisture content immediately after becoming impermeable) can cycle back to a permeable state or absolute PY (complete dry state) when RH increases or decreases, respectively. A conceptual model is developed to propose that seeds from several genera of 19 angiosperm families at the time of natural dispersal can be (1) impermeable (dormant), i.e. primary dormancy; (2) impermeable (dormant) and become permeable (non-dormant) and then enter a dormant state in the soil, often referred to as secondary dormancy; (3) permeable (non-dormant) and become impermeable (dormant) in the soil, i.e. enforced dormancy; or (4) dormant or non-dormant, but cycle between permeable and non-permeable states depending on the soil conditions, i.e. dormancy-cycling, which is different from sensitivity-cycling occurring during dormancy break. It is suggested that this phenomenon could influence the dormancy-breaking pattern, but detailed studies of this are lacking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call