Abstract

Knowing explicitly where we are is an interpretation of our spatial representations. Reduplicative paramnesia is a disrupting syndrome in which patients present a firm belief of spatial mislocation. Here, we studied the largest sample of patients with delusional misidentifications of space (ie, reduplicative paramnesia) after stroke to shed light on their neurobiology. In a prospective, cumulative, case-control study, we screened 400 patients with acute right-hemispheric stroke. We included 64 cases and 233 controls. First, lesions were delimited and normalized. Then, we computed structural and functional disconnection maps using methods of lesion-track and network-mapping. The maps were compared, controlling for confounders. Second, we built a multivariate logistic model, including clinical, behavioral, and neuroimaging data. Finally, we performed a nested cross-validation of the model with a support-vector machine analysis. The most frequent misidentification subtype was confabulatory mislocation (56%), followed by place reduplication (19%), and chimeric assimilation (13%). Our results indicate that structural disconnection is the strongest predictor of the syndrome and included 2 distinct streams, connecting right fronto-thalamic and right occipitotemporal structures. In the multivariate model, the independent predictors of reduplicative paramnesia were the structural disconnection map, lesion sparing of right dorsal fronto-parietal regions, age, and anosognosia. Good discrimination accuracy was demonstrated (area under the curve=0.80 [0.75-0.85]). Our results localize the anatomic circuits that may have a role in the abnormal spatial-emotional binding and in the defective updating of spatial representations underlying reduplicative paramnesia. This novel data may contribute to better understand the pathophysiology of delusional syndromes after stroke. ANN NEUROL 2021;89:1181-1194.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.