Abstract
Efficient multifunctional Titania/Lignocellulosic Biomass (TiO2-OP) composite photocatalysts were fabricated via ultrasonic-assisted sol-gel for the photoreduction of Cr(VI) under UV and visible light. Materials were fully characterized using FTIR, XPS, BET, SEM-EDS, UV-DRS, XRD, photo-current and contact angle measurements. It was deduced that the produced TiOC bonding bridge between TiO2 clusters and olive pits lignocellulosic surface exhibits a significant role for the visible light response and band gap narrowing, wherein, Eg values were between 3.02 and 2.63 eV as a function of TiO2/OP ratio. TiO2-OP composites showed an astonishing photocatalytic efficiency, i.e., a complete reduction of Cr(VI) at 10 ppm was found within 30 min with TiO2-OP(50%), against 90 min for TiO2 under UV light. Nevertheless, in terms of TiO2-OP(50%), a total reduction was obtained within 50 min under visible light, while no photoactivity was observed with bare-TiO2. Several plausible mechanistic pathways behind the photocatalytic efficiency of TiO2-OP composites were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.