Abstract
The overall performance of polymer composites depends on not only the intrinsic properties of the polymer matrix and inorganic filler but also the quality of interfacial adhesion. Although many reported approaches have been focused on the chemical treatment for improving interfacial adhesion, the examination of ultimate mechanical performance and long-term properties of polymer composites has been rarely investigated. Herein, we report carbon fiber (CF)/epoxy composites with improved interfacial adhesion by covalent bonding between CFs and the epoxy matrix. This leads to the improved ultimate mechanical properties and enhanced thermal aging performance. Raman mapping demonstrates the formation of an interphase region derived from the covalent bonding between CFs and the epoxy matrix, which enables the uniform fiber distribution and eliminates phase separation during thermal cycling. The covalent attachment of the CF to the epoxy matrix suppresses its migration during temperature fluctuations, preserving the mechanical performance of resulting composites under the thermal aging process. Furthermore, the finite elemental analysis reveals the effectiveness of the chemical treatment of CFs in improving the interfacial strength and toughness of silane-treated CF/epoxy composites. The insight into the mechanical improvement of CF/epoxy composites suggests the high potential of surface modification of inorganic fillers toward polymer composites with tunable properties for different applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.