Abstract

Evidence suggests that immunoglobulin G (IgG) N-glycosylation is associated with ischemic stroke (IS). However, the causality of IgG N-glycosylation for IS remains unknown. Two-sample Mendelian randomization (MR) analyses were performed to investigate the potential causal effects of genetically determined IgG N-glycans on IS using publicly available summarized genetic data from East Asian and European populations. Genetic instruments were used as proxies for IgG N-glycan traits. IgG N-glycans were analysed using ultra-performance liquid chromatography. Four complementary MR methods were performed, including the inverse variance weighted method (IVW), MR‒Egger, weighted median and penalized weighted median. Furthermore, to further test the robustness of the results, MR based on Bayesian model averaging (MR-BMA) was then applied to select and prioritize IgG N-glycan traits as risk factors for IS. After correcting for multiple testing, in two-sample MR analyses, genetically predicted IgG N-glycans were unrelated to IS in both East Asian and European populations, and the results remained consistent and robust in the sensitivity analysis. Moreover, MR-BMA also showed consistent results in both East Asian and European populations. Contrary to observational studies, the study did not provide enough genetic evidence to support the causal associations of genetically predicted IgG N-glycan traits and IS, suggesting that N-glycosylation of IgG might not directly involve in the pathogenesis of IS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.