Abstract

Traditionally depicted as homogeneous materials, manmade and volcanic glasses are often subjected to nanostructuration during demixing and crystallization of their parental melt. While the controlled formation of nanocrystals has been exploited for decades in the industrial production of glass-ceramics to obtain materials with superior properties, nano-heterogeneities have been recently recognized in volcanic products erupted explosively. Here, a multi-pronged approach is adopted to highlight how the emergence of nano-heterogeneities exerts a previously unexplored influence on the viscosity of multicomponent silicate melts. Calorimetry and viscometry provide evidence of how the formation of TiO2- and FeO-bearing nanocrystals increases the effective viscosity of suspensions. Raman spectroscopy and transmission electron microscopy allow the correlation between the increase in viscosity and the degree of sample modification. This study has implications for glass and glass-ceramics manufacturing and for the development of better numerical models of volcanic eruptions, which are key for the operational assessment of volcanic risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call