Abstract

Sustainion is an anion exchange water electrolyzer membrane that has exhibited a scalable performance. In this work, we present a molecular model for the Sustainion membrane incorporating functionalization of the polymer in order to better mimic experimental conditions. Here in, we present a comprehensive exploration of its structural and transport properties like density, diffusivity and conductivity at various operating hydration levels using molecular dynamics simulations. The density exhibits a non-monotonic trend while the diffusivity showcases a non-linear behaviour with hydration. Furthermore, diffusion exhibits an Arrhenius-like dependence on temperature with the activation energies exhibiting a non-monotonic relationship akin to the density. It is concluded that the afore-mentioned properties of the Sustainion membrane are due to the counteracting influence of the enhancement in coordination number, and a reduction in the potentials of mean force of the different atomic pairs in the system. The effect of added salt on Sustainion properties is also determined and collated with experiments. Based on comparison with experiment, we deduce that vehicular diffusion is the predominant mechanism in the diffusion of the chloride ion, while it contributes approximately 15% to the diffusivity of the hydroxide ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.