Abstract

The effect of the scarcely reported F phase on hydrogen-assisted cracking in nickel-based Alloy 725 was thoroughly studied by combining tensile tests, advanced characterization, and density functional theory (DFT) calculations. The results show grain boundary precipitate F phase promotes intergranular fracture in a hydrogen environment. DFT calculations further indicates hydrogen atoms lower the binding strength of the F phase and Ni matrix interfaces. More importantly, our study showed for the first time that the addition of approximately 0.01 wt.% boron can effectively suppress F phase precipitation, thereby elevating the hydrogen resistance of Alloy 725.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.