Abstract
Cocrystallization involving two or more components aggregating into cocrystals allows the preparation of materials with markedly improved charge mobility. This approach however, is little explored in all-conjugated block copolymers (BCPs). Herein, we report the first investigation into the correlation between cocrystals and charge mobility in a series of new all-conjugated BCPs: poly(3-butylthiophene)-b-poly(3-hexylselenophene) (P3BT-b-P3HS) for high-performance field-effect transistors. These rationally synthesized rod-rod BCPs self-assemble into cocrystals with high charge mobilities. Upon one-step thermal annealing, their charge mobilities decrease slightly despite their increased crystallinities. After two-step thermal annealing, P3BT-b-P3HS (P3BT/P3HS=2:1) and (1:1) cocrystals disappear and phase separation occurs, leading to greatly decreased charge mobilities. In contrast, P3BT-b-P3HS (1:2) retains its cocrystalline structure and its charge mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.